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Abstract

The performance of traditional RAID Level 5 arrays is. for many applications. unacceptably poor
while one of its constituent disks is non-tunctional. This paper describes and evaluates mecha-
nisms by which this disk array failurc-recovery pertormance can be improved. The two key issues
addressed are the data layout, the mapping by which data and parity blocks arc assigned to physi-
cal disk blocks in an array, and the reconstruction algorithm. which is the technigque used 10
recover data that is lost when a component disk fails.

The data layout techniques this pape - investigates are instantiations of the declustered parity orgu-
nization, a derivative of RAID Level § that allows a system to trade some ol its data capacity loy
improved failure-recovery performance. We show that our instantiations ol parity declustering
improve the failure-mode performance ol an array signiticantly, and that a parity-declustered
architecture is preferable to an equivalent-size multiple-group RAID Level 5 organization i envi-
ronments where failure-recovery pertormance is important. The presented analyses also include
comparisons to a RAID Level | (mirrored disks) approach.

With respect to reconstruction algorithms. this paper describes and brictly evaluates two alterna-
tives stripe-oriented reconstruction and disk-oriented reconstruction, and establishes that the latter
1s preferable as it provides faster reconstruction. The paper then revisits a set of previously-pro-
posed reconstruction optimizations. evaluating their efficacy when uscd in conjunction with the
disk-oriented algorithm. The paper concludes with a section on the reliability versus capacity
trade-oft that must be addressed when designing large arrays.
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1. Introduction

The performance of a storage subsystem during its recovery (rom a disk tailure 18 crucial o
applications such as on-line transaction processing (OLTP) that mandate both hign VO pertor-
mance and high data reliability. Such systems demand not only the ability o recover trom a disk
fatlure without losing data. but also that the recovery process (1) tunction without taking the sys-
tem oft-line. (2) rapidly restore the system to its fault-free state. and (3) have minimal impact on
system performance as observed by users. Condition (2) ensures that the system’s vulnerability to
data loss is minimal. while conditions (1) and (3) provide for on-line failure recovery. A good
example is an atrline reservation system. where inadequate recovery from a disk crash can cause
an interruption in the availability of booking intformation and thus lead o (light delays and/or res-
cnue loss. Furthermore, because lault-tolerant storage systems exhibit degraded performance
while recovering trom the failure ol a component disk. the fault-free system load must be kept
light enough for pertormance during recovery to be acceptable. For this reason. a decrease i per-
formance degradation during failure recovery can translate dircetly into improved tault-free per-
tormance. With this in mind. the twin goals of the technigues discussed in this paper are (o
minimize the time taken o recover the content ol a tailed disk onto a replacement: that s, to
restore the system o the tault-tree state, and o simuitancously minimize the impact of failure

recovery on the performance ol the array (throughput and response time) as observed by users,

Fault-tolerance in a data storage subsystem is generally achicved cither by disk nurroring
[Katzman77, Bitton&8. Copeland89. Hsiao91]. or by parine encoding | Arulpragasam80. Gib-
son93, KimB6. Park&6. Patterson&8|. In the former. one or more duplicate copies ol cach user data
unit are stored on separate disks. In the latter. commonly known as Redundant Arravs ol Inexpen-
sive! Disks (RAID) Levels 3. 4. and S [Patterson8& 1. a small portion of the array’s physical capac-
ity is used to store an error correcting code computed over the data stored i the array, The
additional storage required for redundancy can be as large as 25% ol the capacity ol the array, but
18 often much smaller. Swdies {ChenY0a, Gray90] have shown that. duc to superior performance

on small read and write operations. a mirrored array. also known as RAID Level 1. can deliver

1. Because of industrial interest in using the RAID acronym and hecause of their concerns about
the restrictiveness ol its “Inexpensive”™ component, RAID is sometimes reported as an acronyim (or
Redundant Arrays of Independent Disks {RAIDY 3],




higher performance o OLTP workloads than can a parity-based array. Unfortunately, mirroring 1s
substantially more expensive — its storage overhead tor redundancy is 100% 2 that is. tour or
more times larger than that of typical parity cncoded arrays. Furthermore. recent studics [Stodol-
skyY3, Mcnon92a, Rosenblum91] have demonstrated techniques that allow the small-write per-
tormance of parity-based arrays to approach that of mirroring. This paper. theretore. locuses on

parity-based arrays. but includes comparisons to mirroring where meaninglul.

We do not recommend on-line failure recovery for applications that can tolerate oll-line
recovery. since the latter restores high performance and high data reliability more quickly. For this
reason. we tocus the discussion and analysis in this paper around OLTP apphications: these clearly
benetit trom the tailure-mode performance improvements that are the primary topic ol this paper.
Application arcas with very difterent workload characteristics. multimedia tor example. can also
benetit from improved reliability and availability in the storage subsystem. We deter the evalua-

ton of the proposed techniques under such applications to future work.

Section 2 of this paper provides background on redundant disk arrays. Scction 3 introduces
parity declustering and Scction 4 describes data layout schemes for implementing parity declus-
tering. Scction 5 describes the pertormance evaluation environment. Scction 6 describes alterna-
uve reconstruction algorithms, techniques used to recover data lost when a disk tails. Secuon 7
then presents performance evaluation. The tirst part of this section compares the performance of i
declustered-parity array to that of an cquivalent-sized muluple-group RAID Level S wray. and the
sceond part investigates the trade-ott between disk capacity overhead and tatlure-recovery pertor-
mance 1n a declustered-parity array. Scetion 8 describes and evaluates a set ol moditications that
can be applicd to the reconstruction algorithm. Section 9 discusses technigues for selecting i sys-
tem contiguration bascd on the requirements of the environment and application. Section 10 sum-

marizes the contributions of this paper and outlines interesting issucs lor future work.

2. Redundant disk arrays

Patterson. Gibson. and Katz [Patterson&8| present a taxonomy of redundant disk array archi-
tectures. RAID Levels | through S, Of these. RAID Level 3 s bestat providing farge amounts of
data to a single requestor with high bandwidth. while RAID Levels 1 and S are most appropriate

tor highly concurrent access to shared files. The latter are preferable for OLTP-class applications.
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Figure 1: Disk array architectures.

since OLTP is often characterized by a large number ot independent processes concurrently
requesting access to relatively small units of data [TPCARY|. For this reason and because of the
relatively high cost of redundancy in RAID Level 1 arrays. this paper locuses on architectures

derived from the RAID Level § organization.

Figure la and Figure 1b illustrate two possible disk array subsystem architectures. Today's
systems use the architecture of Figure la. in which the disks are connected via mexpensive, Jow-
bandwidth (e.g. SCSI [ANSI&6]) links o an array controller. which is connected via one or more
high-bandwidth parallel buses (c.g. HIPPI [ANSI91]) to one or more host computers. Array con-
trollers and disk busses are often duplicated tindicated by the dotted lines in Figure Dy so that they
do not represent a single point of tailure [Menon93]. The controller functionality can also be dis-

tributed amongst the disks of the array [Cao93].

As disks get smaller [Gibson92], the large cables used by SCSI and other bus intertaces
become increasingly unattractive. The system sketched in Figure th offers an alternative. [t uses
high-bandwidth serial links for disk interconnection. This architecture scales o large arravs more
casily because it climinates the need for the array controller o incorporate a large number ol
string controllers. While serial-intertace disks are not yet common, standards for them are emerg-
ing (P1394 [IEEEY3], Fibre Channel {Fibre91]. DQDB {IEEESY]). As the cost ol high-bandwidth
serial connectivity is reduced. architectures similar to that ol Figure Ib may supplant today s

short. parallel bus-based arrays.
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Figure 2: Data layout in a 5-disk array employing the lett-symmetric RAID Level S organization.

In both organizations. the array controller 1s responsible for all system-related acuvity: con-
trolling individual disks. maintaining redundant information, exceuting requested transters, and
recovering from disk or link failures. The functionality of an array controller can also be imple-
mented in software executing on the subsystem’s host or hosts. The algorithms and analfvses pre-

sented in this paper apply to all array controller implementations.

Figure 2 shows an arrangement of data and parity on the disks of an array using the “lett-
symmetric” variant ol the RAID Level 5 architectures |Chen90b, LecY 1), Logically conuguous
user data is broken down into blocks and striped across the disks to allow Tor concurrent aceess by
independent processes [Livay87]. The shaded blocks. labelled Pi. store the parity (cumulative
¢xclusive-or) computed over corresponding data blocks. labelled Dio through Di 5. An individ-
ual block is called a dara unir il it contains user data. a pariry unir i itcontans parity, and simply
a unit when the data/parity distinction is not pertinent. A sct of data units and therr corresponding

parity umit is referred to as a parity stripe.

Since every update o a data unit implies that a parity unit must also be updated. small write
operations require four disk operations: pre-rcad and write ol the data to compute which bits in
the data unit have been oggled. followed by a pre-read and write ol the parity unit 1o togele the
corresponding bits. To avoid contention for a single parity disk. the assignment o parity blocks to
disks rotates across the array. As Section 6.2 discusses, the unit of data striping. the unit of parity
rotation, and the unit of reconstruction access need not be all the same. In parvcular. the unit ol

data striping should be determined by the array’s expected workload [ChenVOby.

Because disk fatlures are detectable [Patterson®88, Gibson93). arrays of disks constitule an
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erasure channel [Peterson72], and so a parity code can correct any single disk tatlure. To see this.
assume that disk number two has fatled and simply note that

(Pi=Di.0®Dil ®Di2®Di3) = (Di.2 =Di0@Di.l ®Pi®Di3l).

An array containing a failed disk can be restored to its fault-Iree state by successively recon-
structing cach block of the tailed disk and storing it on a replacement drive. This s generally per-
. tormed by a background process in cither the host or the array controller. Note that an array need
not be taken ott-line to implement the reconstruction of a failed disk. because reconstruction
aceesses can be interleaved with user accesses o data on non-lailed disks. and because user
accesses o data on the failed disk can be serviced “on-the-1ly™ by immediate reconstruction of the

indicated unit(s). Once reconstruction is complete. the array can again tolerate the foss ot any sin-

gle disk. and so 1s again fauli-Tree. albeit with a diminished number ot on-line spare disks unul the
faulty drives can be physically replaced. Gibson and Patterson [Gibson9 3| show that a smadl num-
her of spare disks sutfice to provide a high degree ol protection agamst data loss i relatvely large
arrays (>70 disks). Although the above organization can be casily extended to tolerate multiple

disk fatlures. this paper tocusces on single-fatlure toleration.

3. Parity declustering’

The RAID Level 5 organization presents two problems for continuous-operation systems like
OLTP. First. the load increase experienced by surviving drives i the presence of a disk fadure s
severe. Specitically, cach user rcad operation that requests data trom the taled drive mvokes a
read operation on every other disk in the group. and so the read load increase i the presence ol
tatlure 18 100% . Similarly a uscr write operation o a failed data unit must invoke arcad on eveny
other drive in order to be able to compute the new parity tor the targeted partty stripe. This
changes the tour accesses normally needed o perform the wrile into one access per surviving

drive. and hence the write load increase in the presence ol tailure is 25% .7 The casiest way to

2. Parity declustering is also known as Clustered RAID. We preter the tormer ternt as it tollows the

usage in carlier work on mirrored arrays [Teradata&S, Livay& 7. Copeland&89] where user daca and

redundancy information are “declustered™ aver more than the minimal collection ol disks.

3. The write-load increase is not in lact 25% hecause when a user writes data lor which the corre-

. sponding parity has failed. no parity update is performed. This means that some acessses i
degraded mode do tess work than they would in fault-1rece mode (Ng92). This cilect is inversely
proportional to the size of the array (C). and is small for the array sizes we consider i s paper.
and so we neglect it.




understand this 1s to consider a hypothetical user workload that sends r read requests and w o write
requests W cach disk in the array. In fault-free mode. cach user write request translates mto four
accesses. and so cach disk sees atotal workload of r+4w accesses. In the presence of disk tatlure.
this load increases 1o 2r+5w accesses. indicating that read workload has doubled and write work-
load has increased by 25% . For a workload emphasizing small accesses and consisting ol 804
reads on a 40-disk array. this evaluates to an overall load increase ol about 604 .

[t a spare disk is available for a reconstruction process o rebuild lost data onto. then surviv-
ing disks must also bear this additional load. This load increase expericnced by the surviving
disks during reconstruction necessitates that cach disk’s tault-free toad be light enough that the
surviving disks will not saturate when a fatlure occurs. Disk saturation is i general unacceptable
because most applications mandate a minimum level of responsiveness: the TPC-A benchmark
[TPCARY], tor example. requires that 90% of all transactions complete in ander two seconds.

Long queueing delays caused by disk saturation can violate these requirements.

The second problem with RAID Level 5 arrays is that at moderate to high user workloads.
they require a relatively long period of time to recover Irom a fatlure: that s, to reconstruct the
entire contents of a failed drive ond store it on a replacement. This is because the load cerease
associated with the failure can cause even a moderately loaded array o approach saturation.
When this occurs. little disk bandwidth s available Tor reconstruction. and so the process ol
recovering the data takes a long time. During this period of time the arrayv s both operating a
reduced pertformance and vulnerable to data loss due to a second tatlure. and so 1t s essenual that

the reconstruction period be minimized.

The declustered parity [Muntz90. Holland92. Merchant92. Ng92) disk array organizaton
addresses these problems. For o given number ot disks. €. a declustered panty orgamzation
allows the tailure-induced load increase on the surviving disks to be reduced by any integral lac-
tor hetween 2 and C-1. inclusive. This 1s achicved by increasing the amount of redundant mpor-
mation stored in the array, and so 1t can be thought ot as trading some of an awrray s data capacity

tor improved performance in the presence ol disk failure.

Referring again to Figure 2. note that cach parity unit protects C-1 data units. where (s the

number ot disks in the array. If instcad the array were organized such that cach parity unit pro-

§
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Figure 3: Declustering a parity stripe of size four over an wray ol seven disks.

tected some smaller number of data units. say G-1. then more of the array’s capacity would be
consumed by parity. but the reconstruction of a single data unit would require that the host or con-
troller read only G-1 units instead of C-1. As illustrated in Figure 3. parity declustering can also
be viewed as the distribution of the parity stripes comprising a logical RAID Level 5 array on
disks over a set ot C physical disks. The advantage ot this rearrangement 1s that not every surviv-
ing disk is involved in the reconstruction ot a particular data unit: C-G disks are 1ot 1ree o do
other work. Thus cach surviving disk’s degraded-mode load 1s multplicd by a tuctor (G-1)/C-1.
relative o RAID Level 5. The traction (G-D/AC-1) s referred w as the declustering rario. and s
denoted by o More specitically, panty declustering reduces the degraded-mode workload
increase due to user reads from a factor ol 2.0 1 a tactor of T+ou and the workload increase due o

writes trom a tactor of 1.25 to a tactor ol 14+0.25¢.

The declustering ratio can be made smaller cither by incrcasing C for a lixed G as shown
Figure 3. or by decreasing G tor a tixed Co As o is made smaller. performance during latlure
recovery improves since the load increase on cach surviving disk diminishes. but more ol the
array’s capacity is consumed by parity. Many ol the performance plots in subsequent sections are

presented with oo on the x-axis.

Whe G =2 (the minimum allowable value) declustered parity reduces 10 mirroring, sinee

the parity unit for cach party stripe is computed as the XOR over only one data unit. Note how-




¢ver that since the array consists of a large number of parity stripes. the mirror copy ol cach disk
is distributed over the array rather than being localized o one disk. Thus parity declustering with
G =2 1s essentially the samie as interleaved declustering (a technique tor distributing the backup
copies in arrays ol mirrored disks [Teradata85. Copeland®9. Hsiao91]). the only difference being
in the mechanism used to select the disks upon which the backup copy of cach data unit resides.
At the other extreme, G = C (o = 1.0), parity declustering is cquivalent to RAID Level S, Thus
parity declustering can be secn as defining a continuum of design points between RAID Lovel 5
and mirroring, with the capacity overhead being increased and the faillure-mode performance

being improved as G is reduced.

A few other studics have looked at improving tailure recovery performance via technigues
similar to parity declustering. Teradata [ Teradata85] defined and impiemented interleaved declus-
tering tor mirrored disks. which was subsequently cvaluated by Copeland and Keller [Cope-
land®9]. Muntz and Lui [Muntz90] first proposcd applying declustering o parity-hased arrays.
but left open the problem of implementation. specifically appropriate data fayouts. Ng and Matt-
son [Ng92] developed a data layout solution concurrently with the research reported in this paper.
using essentially the same technique as is described in Scction 4. Our paper provides a more thor-
ough treatment ol many implementation issucs. but does not address one interesting issue men-
tioned by Ng and Mattson: the interaction of parity declustering with distribured sparing
{Mcnon92b]. We believe this topic merits further examination. Reddy and Bannerjee [Reddy9t |
also proposed a technique for implementing a form a parity declustering where the declustering
ratio is fixed at approximately 00.5. Merchant and Yu [MerchantV2] described a substantially dii-
terent but cquivalent-performance implementation ol parity declustering, which we discuss i

detail in Section 4.3,

4. Disk array data layout for parity declustering

[n most disk array systems. the array controller (whether implemented in hardware or as a
device driver in the host operating system) implements an abstraction of the wray as a lincar
address space. A disk-managing application such as a file system views the disk array's data units
as a lincar sequence of disk sectors that can be read or written. Parity units typically do not appear

in this address space: that is. they arce not addressable by the application program. The array con-




troller translates addresses in this user space into physical disk locations tdisk identtiers and disk
offsets) as it pertorms requested accesses. It is also responsible tor performing the redundancy -
maintaining accesses implied by application wnte accesses. This mapping ol an application’s log-
ical unit of stored data o physical disk locations and associated parity locations s reterred 1o as
the disk array’s lavour. In this section we discuss goals tor a disk array layout. present a Jayoul tor
declustered parity based on balanced incomplete block designs, and contrast 1t to a layout pro-
posed by Merchant and Yu [Merchant92] which supports more contigurations ol farge arrays at

the cost of higher complexity.

4.1. Layout goodness criteria

Extending from non-declustered disk array layout rescarch [Lee0. DibbleYO] we have wden-

titied six criteria tor a good disk array layout.

1. Single failure correcting. No two stripe units in the same parity stripe may reside on the same
physical disk. This 1s the basic characteristic of any single-tatlure-tolerating redundancy orga-
nization. In arrays in which groups ot disks have a common tatlure mode. such as power or
data cabling, this criteria should be extended o prohibit the allocation ol umts Irom one panty

stripe to two or more disks sharing that common failure mode { SchulzesY. Gibson9 3|,

12

. Distributed recovery workload. When any disk fails, its user workload should be cvenly dis-
tributed across all other disks n the array. When replaced or repaired. its reconstruction work -

load should also be evenly distributed.

3. Distributed pariry. Parity information should be evenly distributed across the array to badance

parity update load.

4. Efficient mapping. The functions mapping a tile system's logical block address o physaical
disk addresses for the corresponding data unit and parity stripe. and the appropriate iverse
mappings. must be cthiciendy implementable: they should consume neither excessive compu-

talion nOr MEeMory resources.

5. Large write optimization. The layout should ensure that when aouser pertorms a winte that s
the size of the data portion of a parity stripe and starts on a parity stripe boundary. it iy possthic

to execute the write without pre-reading the prior contents of any disk data Since the new par

Y




ity unit depends only on the new data. this criterion requires that it be possible to simply com-
pute the new parity in memory and write it to the appropriate disk location. Another way of
stating this criterion is that the allocation of contiguous user data to disk data units should cor-

respond to the allocation ol disk data units to parity stripes.

6. Maximal parallelism. A rcad of contiguous user data with size cqual o a data unit times the
number of disks in the array should induce a single data unit rcad on all disks in the array
(while requiring alignment only to a data unit boundary). This insures that maximum parallel-

ism. and theretore minimum responsc time., can be obtained.

Criterion six should not be interpreted as placing constraints on the size of the data unit in the
array: 1t makes recommendations only about the assignment of consceutive data units to disks.
Using more than one disk to service a read operation incrcases the positioning overhead (cumula-
tive seek time and rotational delay) incurred by the read. but reduces the data transter time. [t the
amount of data transferred from cach drive is relatively small. and other requests are waiting 1o
access the array. then the parallel transfer of the access will lead to signiticantly lower throughput
because of this extra positioning overhead. In this case. higher throughput would be achicved by
servicing multiple accesses concurrently. with cach accesses using fewer drives. However it a
very large read is serviced by a small number of disks. the response time ot the read will be very
long due to the lack of parallel data transter. Theretore. the stripe unit size should be selected
according to the characteristics ot the expected workload [Chen90b)|. and the layout policy should

not influence this selection.

The best way to understand the value of criterion six is to consider the ramitications ot disre-
garding 1L After the characteristics of the expected workload have been used o determine the
appropriatc data unit size. it may still be the case that there occur somie user aceesses large enough
to span all the disks in the array. If criterion six is ignored. the data units of a very large contigu-
ous read could be allocated over a possibly small subsct of the disks. (This is consistent with ¢ri-
tzrion tive it G is much smaller than C.) This could render the tile system or application program
unable to achieve high transfer bandwidth even for very large contiguous reads, and so the
response time of these reads would be many times longer than necessary. Criterion six provides a

very simple model for tile systems and applications o ensure last transler for large ohjects.

10




Finally, note that the tirst tour criteria deal exclusively with relationships between stripe units
and parity stripe membership. while the last two make recommendations for the relationship
between user data allocation and parity stripe organization. A file system is. of course. not
requircd to allocate contiguous uscr data contiguously in the array’s address space. In this sense
the array controller has no direct control over whether or not the last two criteria are always met.
even if it 1s implemented as a device driver in the host. The best that can be done is to meet these

last two criteria for data units that arc contiguous in the address space of the array.

4.2. Layouts based on balanced incomplete block designs

The primary goal in designing a layout strategy for parity declustering is to meet the second
goodness criterion: every surviving disk in the array should absorb an cquivalent fraction ot the
total extra workload induced by a fatlure. including both accesses invoked by users and recon-
struction accesses. An equivalent tormulation is that the same number ot units be read rom cach
surviving disk during the reconstruction of a failed disk. This will be achiceved if the total number
of parity stripes that include a given pair of disks is constant across all pairs ol disks. that is. if
disks number / and j appear together in a parity stripe cxactly # times for any 7 and j. where n1s
some fixed constant. As suggested by Muntz and Lui. a layout with this property can be derived
from a halanced incomplete hlock design |Hall&6]. This scction shows how such a layout may be

implemented.

A block design is an arrangement of v distinct objects into b Luplcs“‘. cach contaming A cle-
ments. such that cach object appears in cxactly r tuples. and cach pair ol objects appears in
exactly }»,, tuples. For example. using non-negative integers as objects. a block design with h = 5,

v=5 k=4, r=d.uand A, = 3 is given in Table 1.

This cxample demonstrales a simple form of block design. called a complete block design.
which includes all combinations of exactly & distinct clements selected trom the set of v objects.

v
k
ables since the following two relations arc always true: bk = vr. and r(k-1) = ll,(r-l). The first of

The number of these combinations is ( ] Note that only three of v & b, r and 7\,, are ree vari-

4. Thesc tuples arc called blocks in the block design literature, We avoid this name as it contlicts
with the commonly held detinition of a block as a contiguous chunk of data. Similarly we use k,,
instcad of the usual A for the number ol tuples comaining cach pair of objects (o avoid contlict
with the common usage of A as the rate of arrival of user accesses at the array.




Tuple Number Tuple
0 0H,1.2.3
| 01,24
2 0.1.3.4
3 0.2.3.4
4 1.2.3,4

Table 1: A sample block design on tive objects with four objects per tuple.

Oftfset DISKO  DISKI DISK2  DISK3  DISK4

0 D0.0 DO.1 DO.2

I D1.0 Dl1.1 D1.2 D22
2 D2.0 D2.1 D31 D32
3 D3.0 D4.0 D41 D4.2

Figure 4: Examplc data layout in a declustered parity organization

these relations counts the objects in the block design in two ways. and the sccond counts the pairs

in two ways.

The layout associates disks with objects and parity stripes with tuples. For cfarity. the toffow-
ing discussion is illustrated by the construction of the layout in Figure 4 trom the block design in
Table . To build a layout. we {ind a block design with v = C. k = G. and the minimum possible
value for b. The mapping identitics the clements ol a tuple in a block design with the disk num-
bers on which cach successive stripe unit of a parity stripe is allocated. In Figure 4. the tirst tuple
in the design of Table [ 1s used to lay out parity stripe (): the three data blocks in parity stripe O are
on disks 0. 1. and 2, and the parity block is on disk 3. Based on the sccond tuple. stripe 1 1s on
disks 0. 1. and 2, with parity on disk 4. In general. stripe unit j of parity stripe 7 is assigned o the
lowest available offset on the disk identified by tic M element of tuple i mod b in the block

design.

It is apparent from Figure 4 that this approach produces a layout that violates the distributed
parity criterion (3). To resolve this violation, we duplicate the above layout G times (four times
for the example in Figure 4), assigning parity to a different clement of cach uple in cac™ duplica-

tion. as shown in Figure S. This layout, the cntire contents of Figure S. is turther duplicated unul
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Figure 5: Full block design table for a parity declustering organization.

all stripe units on cach disk are mapped to parity stripes. We reter 1o one iteration ol this fayout
(the tirst four blocks on cach disk in Figure 5) as a hlock design rabie. and one complete cyele all

blocks in Figure 5) as a full block design table.

Of course. it the block design has a very large number of tuples, then the size of one tull table
can ¢xceed the size ot the array. This results in violations ot criteria two and three. Henee. 1t

necessary o ind an appropriately small destgn for cach combination of C and G,

[t1s casy o venty that the layout ot Figure S meets the first four ot the criteria: (1 No two
stripe units trom the same panty stripe will be assigned to the same disk because no tuple m the
block design contains the same clement more than once. (2) The Tatlure-induced workload s
cvenly balanced because cach disk appears together with cach other disk i exactly Al, party
stripes in one block design table. This property implies that when any disk fuls, exactly Ay, stripe
units must be read from cach other disk in order to reconstruct the nussing data tor that table.
Since the tarlure-induced workload is balanced in cach table. it is balanced over the enure array.

(3) Parity is balanced because over the course of one tull table. parity is assigned o cach element




of cach tuple in the block design exactly once (refer to the boxes labelled “parity™ in Figure 5.
Since cach element appears exactly Gr times in the full table, cach disk is assigned a parnty unit
exactly Gr uimes over the course of the tull table. Again. since parity is balanced in every tull
table, it 1s balanced over the entire array. (4) While it is not guaranteed that a block design will
exist for every possible combination of € and G. nor that the numbcer of blocks will be sutticiently
small that the size of a tull table will not exceed the size of the array. we have idenulied aceept-
able block designs for all combinations of C and G up o 40 disks. and for many of the possibic

. . S . R . . .
combinations beyond-. Section 9 discusses the problem-of designing larger arravs.

As previously mentioned. criteria tive and six are dependent on the assignment of user data
units to units in the address space ot the array. and so a data layout mechanism can not guarantee
that they will be met. Assuming that this user data mapping is sequential. that is. that successive
blocks of user data are mapped to the successive data units ot the array's address space. the above
layout meets criterion tive (the large write optimization). but fails to mect Ccriterion six (maximum
parallelism). To sce this, note that since consecutive user data is alwayvs consecutive within a par-
1y stripe. a write of G-1 user data units aligned on a G- 1 unit boundary i the address space of the
array will always map to the complete set of data units in some panty stripe. and so the large wrie
optimization can be applicd. However. Figure 4 shows that reading C (5. 1m0 this case) successive
user data units starting at the unit marked D0O.0 results in disks O and | being used twice. and disks

2and 4 notat all, and hence eriterion six is violated.

As llustrated in Figure 6. it is possible to meet criterion six by emploving a user-data map-
ping similar to Lee’s left-symmetric layout for non-declustered arrays [Leev ] but this causes the
layout to violate criterion five. This mapping works by assigning cach successive user data block
to the first available data unit on cach successive disk. thereby guaranteemy that criterion sixois
mct. [tcauses criterion five o he violated because successive user data blocks may be assigned 1o

differing parity stripes.

Since typical OLTP transactions access data in small units [TPCARY]. large accesses account

tor a small fraction of the workload. typically arising from decision-support or array-mamtenance

5. We arc constructing a database of block designs derived trom the sources deseribed in Section
4.4. At the time of publication. this database is available via anonymous 1p from ip.es cmu.edu
(internet address 128.2.206.173) in the tile project/nectar-io/Declusienng/BD _database tar. 7.,
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Figure 6: Mccting criterion six via left-symmetrie parnty-declustered Tayoul.

The figure shows the pariry stripes that are allocated by the st nwo rerations ot the block
design table, with data units mapped in the stvle of Lee s left-svmmetric lavour [Lee ] For clar-
irv, the data units are marked with their identifiers in the address space of the arvav. rather than
their pariry stripe ID and pariny stripe offset ay in Figure 4 and Figure 5. Note that the data wniis
in parity group 7 dare not sequential in the arrav’s data address space. so criterion pive is violared.

tunctions rather than application transactions. Thus. tor OLTP environments. & mimnority ol uscr
accesses touch more than one data unit. and reads that access a number ot data units comparable
to C are rarer still [Ramakrishnan92|. Therefore the benetit of achieving eriterion six in the favout
would be marginal in the OLTP workloads we are emphasizing, However: we have observed that
under user workloads where large rcads are more common. the lailure to meet criterion six. com-
bined with the fact that a declustered parity array must skip over more parity units when servicing
a read large enough to access multiple data units from multiple disks. causes the response tume o:
these large reads to be significantly longer in parity declustering than in RAID Level 5. for exam-
ple. We defer to future work the problem of simultancously meceting both criterion tive and crite-

rion six®.

4.3. Layouts based on random permutations

Merchant and Yu [Merchant92] have independently developed an array layout strategy lor
declustered parity disk arrays. This section brielly describes their layout strategy and compares it

to the block-design based approach developed above.

6. We note that one promising approach to improving the responsc time ot large reads would be o
optimize the ordering of tuples in the block design and clements in cach tuple in order to maximnze
the adherence to criterion six without giving up adhcrence to criterion five,

(]




Their approach distributes tailure-induced workload (criterion two)y and parity (criterion
three) over the disks in the array by randomizing the assignment of data and parity units to disks.
The layout detines a lincar address space consisting of units numbered O through BC-1. where B is
the number of units on a disk and C 1s the number of disks in the array. Every G unit in this
address space (units number G-1, 2G-1. 3G-1. ctc.) contains parity tor the previous G-1 units. If
the assignment of these units to disks were truly random. then there would be no guarantee that
the units comprising a parity stripe all reside on ditterent disks (criterion one). Instead. their lay-

out uses a set of random permutations on the disk identifiers to assign units to disks.

Detine a set of random permutations of the integers from O to C-1 as tollows: P, the nth per-

mutation in the set. maps the integera w P, . where 0 <a < Cand O < P, < C.as illustrated:

(=

PO 1 ..C=1) = (P, P, P )

n S ol

To map the location of the W data unit. let i = Li/C ) and § =i mod C. The physical location ol
unit i is offset n into the disk with identificr P, ;. Thus the permutation 2, is used o identily the

disks on which units number nC through (n+1)C-1 reside.

When C is a multiple of G. no parity stripe will span more than one permutation. Since the
clements of cach permutation are distinct. the units comprising a parity stripe will all reside on
difterent disks. and so criterion one is met. I C is not a multiple of G. then using cach permutation
R = LCM(C.GYG umes sequentially. where LCM(O) is the least-common-multiple function.
ensures that no parity stripe spans two different permutations, again mecting the needs of criterion
one. The fact that the set of permutations used to map an array is sclected randomly implies both
that parity blocks are randomly distributed, and that cach parity stripe is mapped to a set ol disks
chosen randomly trom the (EJ possible combinations. ensuring that criteria two and three are also
met. Criterion four is met as long as the permutation P, can be computed ctficiently. Merchant
and Yu present an algorithm for this that operates by controlling the exchange phase of a series of
applications ol a shuftlc-cxchange network with random bits derived from a lincar-congruential
random number gencrator. While certainly requiring substantial computation. this algorithms
asymptotic computation needs grow slowly with respect to C and G. As in the block-design based

layout of Figure S, criteria five is met ar 1 six is violated by this permutation-based layout.

We have verilicd by simulation that this layout yiclds array performance essentially identical




to that of the block-design bascd layout. The advantage ol this algorithm. then, is that i1 1s able 1o
generate a layout tor arbitrary C and G. whereas the block design approach is limited o those
combinations of C and G tor which a design can be found. The disadvantage is the relatively large
amount of computation a host or controller must do to compute a physical disk address every time
a unit of data is accessed. By way of contrast. the block-design based algorithm computes physi-

cal disk addresses by a table lookup and a few simple arithmetic operations.

4.4. Choosing between layouts

Complete block designs such as the one in Table 1 arce casily gencerated. but m most cases
they are too large to be usetul. The number of blocks in a complete design. <(, SIsan general o
large that the block-design-bascd layout fails to have an ctlicient mapping. For example. a 40 disk
array with 10% parity overhead (G=10) mapped by a complete block design will have about one
billion tuples in its block design table. In addition to the ridiculous amount of memory required (o
store this table. the layout generated from it will meet neither the distributed parity nor distributed
reconstruction criteria becaase even large disks rarcly have more than a tew mitlion sectors. For-
tunately. there exists an extensive literature on the theory of balanced incomplete block designs

(BIBDs). which are simply designs having fewer than {é. ples.

The construction of BIBDs is an active arca of rescarch in combinatorial theory. and there
exists no technique that allows the direct construction ol a design with an arbitranly-speciticd set
of parameters. Instcad. designs are generated on a case-bhy-case basis, and tables of known designs
[Hanani75. Hall86. CheeY0. Mathon90] are published and periodically updated. These tables are
densc when v is small (less than about 45). but become gradually sparser as v increases. Hanani
[Hanani75]. tor example. gives a table of designs that can be used to generate w lavout tor any

value ot G given C not larger than 430 and for many combinations with larger .

Since the block design approach is computationally more efticient than the random-permuta-
tion approach, we recommend that it be used if the array can be conligured using values ol € and
G for which an acceptably small block design is known, When a system’s goals cannot he met
using any such configuration, then. of course use the random-permutation algorithm. Section 9

discusses the problem ol configuring very large arrays.
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Figure 7: The structure of raidSim.

S. Evaluation methodology

All analyses in this paper were done using an event-driven disk array simulator called raid-
Sim [ChenY0b, Lee9t], originally developed for the RAID project at U.C. Berkeley [Katz&89]. Tt
consists of four primary components. illustrated tn Figure 7. The top level of abstraction contains
a svathetic reference generator. Table 2a shows the workload gencerated tor the simulations, This
workload 1s based on access statistics measured on an airhine-reservation OLTP svstem
[Ramakrishnan92]. The requests produced by this workload generator are sent o a RAID striping
driver. whose tunction ts to translate cach user request into the corresponding set ol disk accesses.
Table 2b shows the conliguration of our extended version of this striping driver. Low-level disk
operations generated by the striping driver are sent o a disk simulation module. which accurately
models signtticant aspects of cach specitic disk access (seek tme. rotation ume. cyhinder lavout.
ete.). Table 2¢ shows the characteristics of the 314 MB. 3-1/2 inch diameter IBM 0661 Model 370
(Lightning) disks on which the simulations are based [IBMO661]. At the lowest level ot abstrac-

tion in raidSim s an event-driven simularor. which is invoked to cause simulated time 1o pass.

As disks get smaller and less expensive. and as systems demand increased 170 vates. the num-
ber ol disks in a typical array will increase. For this reason. we tocus our simulalions on array
sizes that are farger than are common today. Specitically. the simulations reported in subseguent
sections usc a default array size ol 40 disks. In order to verify that our conclusions are not specitic
to a particular array size. we also ran 20-disk simulations in most cases. The performance ot the
20 disk array was identical to that of the 40-disk array lor a given user workload measured m

accesses per second per disk. and so we report only the 40-disk results here.

All reported simulation results represent averages over live independently seeded simulation
runs. In all cases, this resulted in very small conlidence intervals G few pereent of the mean) and
so the performance plots in subscquent sections do not report these actual intervals. For simula-

tons ol fauli-free and degraded-mode arrays (refer to Section 7). the simulation was not termi-




Table 2a: Workload Parameters
Access type % _of workload Opcration  Size (KB) AlignmentUKB ) Distihution

1 K0 Read 4 4 Unitorm
2 164 Write 4 4 Unitorm
3 24 Read 24 24 Untlorm
4 29 Write 24 24 Umilorm

Number of requesting processes: 3 x (number ot disks)
Think time distribution: Exponcential, with mean varied to adjust offered load

Table 2b: Array Parameters
Array size: 40 disks
Stripe unit size: 24KB
Reconstruction unit: - 24KB
Head scheduling: FIFO

User data layout: Sequential user data -> sequential units of sequential panty strpes
Datw/Parity lavout: Block-design based
Disk spindles: Synchronized

Table 2c¢: Disk Parameters

Geomeltry: 949 cylinders. 14 heads, 48 scctors/track

Sector size: 512 bytes

Revolution time: 13.9 ms .

Seck time model: 204000 cvls +046 - Jovly (ms. oviy = seek distance mevlinders-1
2.0 ms men. 12,5 ms average. 25 ms max

Track skew: 4 sectors

Cylinder skew: 17 sectors

MTTF: 150.000 hours

nated until the 95% conlidence interval on the user response time had tallen to less than 34 ol the
mean. For reconstruction-mode runs, the simulation was terminated at the completion ot recon-
struction. All simulation were “warmed up™ by running a few accesses betore initiating the collee-

tion of staustics lor that run.

6. Algorithms for lost data reconstruction

A reconstruction algorithm is a strategy used by a background reconstruction process (o
regencerate data resident on the failed disk and store it on a replacement. In this section we evalu-
ate two such algorithms. and then report on a study investigating the effects ol modilying the size
of the reconstruction unit. which 1s the amount of data read or written in cach reconstruction

dCCCSS.
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6.1. Comparing reconstruction algorithms

The most straightforward approach. which we term the srripe-oriented algonthm. is as 1ol

lows:

for cach unit on the taled disk

Adentity the parity stripe to which the unit belongs.

Assue low-priority read requests Tor all other units i strpe, includimg the panty umit,
- Wait until all reads have completed.

. Compute the exclusive-or over all units read.

Issue a low-priority write request to the replacement disk.

Wait tor the write to complete.

2 1D —

I 4

cend

This algorithm uses low-priority requests i order o mimmmize the impact of reconstriction
on user response time. since commaodity disk drives do not generally support any torm of preemp-
uve access. A low-priority request is used even for the write to the replacement disk. sinee this

disk services writes in the user request stream as well as reconstruction writes [Holand92).

The problem with this algorithm s that 1t1s unable to consistendy uulhize all disk bandwidth
not absorbed by user accesses. First it does not overlap reads of surviving disks with writes to the
replacement. so the surviving disks are idle with respect o reconstruction durig the write to the
replacement. and vice versa. Second. the algorithm simultancously issues all the reconstruction
reads assoctated with a particular parity stripe. and then waits tor all to complete. Somie ol these
read requests will take longer to complete than others. sinee the depth of the disk gueues and disk
head locations will not be identical for alt disks. Theretore, during the read phase ol the recon-
struction Joop, cach involved disk may be tdle from the time that 1t completes its own reconstruc-
ton read unul the ume that the slowest read completes. Third, v the declustered paniny
architecture. not every disk is involved in the reconstruction ol every parity stripe. and so somy

disks remain sdle during every iteration of the algorithm.

These deficiencies can be partially overcome by parallelizing this algorithm. that 1s. by stmul-
tancously reconstructing a set ol P parity stripes instead ol just one {Holland92 !, but this does not
guarantee that the reconstruction process will absorb all the availabie disk bandwidth. Disks may
stll wdle with respect o reconstruction because the set ol P parity stripes under reconstruction at

any point in ume is aot guaranteed to use all the disks in the array. Furthermore. the number of
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outstanding disk requests cach mdependent reconstruction process Mainbiins Viaries i4s accesses
are issued and complete. and so the number of such processes must be large it the array 1s to be
consistently utihized. Finally. a large numbcer of reconstruction processes require a large amount ol
hutter memory i the host or controller.

A better approach 1s to restructure the reconstruction algorithm as a disk-oriented. msicad ol
stripe-oriented. process [MerchantV2, Hou93, Holland93]. Instead of creating one reconstruction
process. the host or array controller creates C processes. cach associated with one disk. Each ol
the C-1 processes assoctated with a surviving disk execute the tollowing foop:

repeat
1. Find the Towest-numbered unit on this disk that is needed tor reconstruction.
- Assue a low-priority request to read the indicated unit mto a butter.
- Wait for the read to complete.

- Submit the umit's data to a centralized bulfer manager tor subsequent XOR.
until (all necessary units have been read)

‘a0 L9

4

The process ussoctated with the replacement disk executes:
repeal
1. Request a butfer of fully reconstructed data from the buficr manager. blocking 1l none.
2. Issuc a low-priority write ol the butter to the replacement disk.
3. Wait Jor the write 1o complete.
until (the tailed disk has been reconstrucied)

In this way the butfer manager provides a central repository for data from partty stripes thad
are currently “under reconstruction.” When a new bulter arrives trom a surviving-disk process,
the butfer manager XORs the data into an accumulating “sum’™ lor that parity stripe. und notes the
arnval ol a unit tor the indicated parity stripe from the indicuted disk. When it receives aregiest
trom the replacement-disk process it scarches its data structures tor a parity stripe tor which all
units have armived. deletes the corresponding bulter from its active hist. and returns this hutier

the replacement-disk pmccss.7

The advantage ot the disk-oriented approach is that it is able to maintain one low-priority

7. When a disk 1is momentarily idled duc to random fluctuations in the user workload. 10 s possible
lor a reconstruction process to “race ahead™ ol the others and consume a large number of bullers.
This could potentially lead 1o increased butfer stalls because other processes would be unabie 1o
acquire hutters when needed. We have not observed this to be a problem in our simulattons, but i
could be addressed by slowing or stopping any reconstruction process that gets too lar ahead of the
others.
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Figure 8: Comparing reconstruction algorithms: (a) reconstruction time and (b) average user
response time during reconstruction.

request in cach disk’s queue at all tumes. which means that it will absorb all of the array’s band-
width not absorbed by uscr accesscs. This is demonstrated in the simulation results of Figure X.
which plots the rcconstruction time and average user response time versus the declustering ratio
(o) for I-way, 8-way, and 16-way parallel stripe-oriented reconstruction. and tor disk-oriented
reconstruction, in a 40-disk array using the parameters in Table 2. This figure shows that the disk-
oriented algorithm makes more efficient use of the system resources: reconstruction time is
reduced by up to 409% over the 16-way parallel stripe-oriented verston, while the average and YOth
percentile response times remain essentially the same. independent of the value ol o Low-paral-
lelism versions of the stripe-oriented algorithm yield slightly better user response tme because
they cause disks to idle tairly (requently, allowing user requests o more often arrive to tind an
empty disk queue. This does not happen in the disk-oriented algorithm because reconstruction

accesses arce always initiated as soon as any disk becomes idle.

A P-way parallel stripe-oricnted algorithm requires PG controller memory buffers. while
disk-oriented algorithm requires about 2C or 3C. Thus except at very low declustering ratios. the
disk-oriented algorithm uscs less bulfer memory than the stripe-oricnted algorithm with signili-
cant parallelism, and yet delivers faster reconstruction. In the example 40-disk array with a=0).5.
the disk-oriented algorithm requires about 100 buffers. while the 8-way parallel stripe-oriented

algorithm requires 160. Figure 8 shows that the disk-oriented algorithm is able to reconstruct




about twice as fast under these conditions.

Furthermore. because the total buller regquirements ol the disk-onented algorithm are rela
tively small. the required memory can typically be borrowed trom the controller or host bulles
cache. It a reconstruction butler is the size of one track (as indicated by the results of the nextsee-
tion) and a disk contains 10.000 tracks. then the 100 bulters required tor the example 40-disk
array total about 1% of the size of one disk. It butter memory costs 25 ames as much per mega-
byte as disk. a bufter cache ol 10% of the size ot one disk costs about 69 ol the wotad disk costn
the example array. and so 1s altordable in cither the host or controller. The 149 needed 1o effect
reconstruction rapidly can thus be borrowed to gready speed reconstruction. i most cases without

dramatically altering the performance of the cache.

Because of its superior reconstruction time charactensucs, the disk-oriented algorithm s

used tor all the tollowing performance analyses.

6.2. Unit of reconstruction selection

In the algorithms presented so far. the reconstruction processes read or write one unit per
reconstruction access. Since the rate at which a disk drive is able to read or write data increases
with the size of an access, it is worthwhile o investugate the benetits of using reconstruction
accesses that are different in size from one data unit. that is. to decouple the size ol the reconstrtce-
tion unit from that of the data unit. The block-design based layout deseribed above requires a sim-
ple modification to support this decoupling. This section desceribes this moditicaton and then

mnvestgates the sensitivity of fatlure-mode performance to the size ot the reconstruction unit.

Referring back to Figure 4. assume that the reconstruction unit s tour tmes as large as the
data unit. and that disk number | has failed. It the reconstruction process at some pomt reads tour
consccutive units starting at offset zero on disk 2. the data that is read contamns data unit D3/,
which is not nceded to reconstruct disk 1. In general. since the units necessary o reconstiuet
particular drive are interspersed on the disks with units that are not. the reconstruction process
must cither waste time and resources reading unnecessary data. or it must break up s aceesses
into sizes smaller than one reconstruction unit, which results in substantially less cthicient di.a

transter trom the disks.
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Figure 9: Doubling the size ol the reconstruction unit.

This problem can be chminated by repeating the tuple assignment pattern cnough umes o
pack multiple data stripe units into a single reconstruction unit. This moditied favout s illustrated
in Figure 9. where the reconstruction unit size is twice the data unit size. While Figure 4 advances
to the next tuple in the block design after cach parity stripe. the moditied layout advances after

very n parity stripes. where n s the reconstruction unit siZe divided by the data unit size.

Note that the layout stripes data units across reconstruction units, nstead ol hilling cach
reconstruction unit with data units before switching to the next. [n other words. the first tuple s
used to lay out substripe ), the second tuple for substripe 1. and so on up o the fifth ple tor sub-
stripe 4. At this point. the first tuple is used again o lay out substripe 5. and so on up to substripe
9. which completes the block design table. The process repeats in the next table, and the full block
design table is constructed in the same manner as in Figure 5. Switching o the next tuple in the
block design atter cach substripe rather than after cach parity stripe avoids cxeessive clustering ol

consceutive user data units onto small sets ol disks.

The above modification can ol course be extended o pack an arbitrary number ot data units
into cach reconstruction unit. With this moditied layout. cach reconstruction unit occupies a con-
uguous region on cach disk. and so can be read in a single access without transicrring extrancous

data.

Using a large reconstruction unit speeds reconstruction because disk accesses are more cfti-

cient tor large transters than for small ones. but it lengthens user response time because large




accesses monopolize the disks tor longer periods of time. To quantity this trade-ofl. Figure 10
plots the cumulative response time degradation during disk-oriented reconstruction versus the
declustering ratio for a 40-disk array driven to about 50% fault-free utilization using the workload
described in Table 2a. The cumulative degradation is the product of the reconstruction time and
the increase in average uscr response time during reconstruction over the Lault-free response time.
By this “total extra wait time” metric, the increasc in ciliciency obtained by increasing the size ol
the reconstruction unit above one track does not compensate tor the clongation in response time it
causes. Figure 10 establishes that the appropriate reconstruction unit is approximately one track.

and so all the reconstruction simulations in subscquent sections use this size.
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Figure 10: Cumulative response time degradation during reconstruction.

CumDeg = (AvgRespTime .,y - AvgRespTime jy iy gree) = ReconTime

7. Performance evaluation

This section examines the performance. in terms ol throughput and response tume. ol the
declustered parity organization under three operating conditions: when the array is tault-tree.
when it is in degraded mode. i.c. when a disk has failed but no replacement is available. and dur-
ing the reconstruction of a disk. Declustering is intended to improve degraded- and reconstruc-
ton-mode performance without aftecting fault-free performance. This section afso examines the
implications of declustering on the reliability of the array. Declustering exposes more disks 1o see-

ond failure during rcconstruction, but it also makes reconstruction much [aster.




In this section we will answer two specilic questions. First. how does a parity declustered
array compare to an cquivalent-size non-declustered array that uses the left-symmetric RAID
Level 5 layout in multiple groups of disks? In this comparison, the two systems have the same
number of disks and contain the same amount of user data. Sccond. once we understand when to
use declustering at all. what benefits can be obtained by reducing the value of G for a fixed num-
ber of disks in the array”? Reducing G results in less available uscr data space. but improves the
failure-recovery performance substantially. In this latter exploration we include the case where
G = 2. which corresponds to mirrored disks with the backup copy distributed over the wrray. For
completeness, we also include the case where the mirror copy of cach drive resides on exactly one
other drive rather than being distributed. All the simulations that follow usc the workload. array

configuration. and disk model described in Table 2.

The results show that parity declustering is a better solution to the failure-recovery problem
than the traditional approach of breaking up an array into multiple independent groups. They also
show that parity declustering can reduce reconstruction time by up o almost an order of’ magni-
tude over RAID Level 5 tor low values of the declustering ratio. while simultancously reducing

user response time by a factor of about two.

7.1. Comparison to RAID Level 5

Onc way to handle the problem ot very long user response time during lailure recovery in a
RAID Level 5 disk array is to stripe user data across multiple grnupsx. The overall average pertor-
mance degradation expericnced when a drive fails in a multi-group array is less than that of a sin-
gle group array because the load increases on only the drives in the attected group. This means
that on average only one aceess in Nyp,,e cxpericnees degraded performance. where Noroups 18

the number of groups in the array.

This section compares a multi-group RAID Level 5 organization to a single-group declus-

tered-parity array. We keep constant the fraction ol the array’s capacity consumed by parity by

8. Following the terminology of Patterson, Gibson, and Katz [Patterson&8|. a group in a single-
failure tolcrating array is a sct of disks that participate in a redundancy encoding (o toferate at most
onc concurrent failure. In this sense an array with parity declusiered over all disks is a single
group.
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Figure 11: Comparing RAID Level 5 to parity declustering: lault-free performance.

fixing the size of a parity stripe at 10 units. This means we compare a 4-group 9+1 RAID Level 5
(a=1.0) to a C=40), G=10 declustered array (0=0).23). In Scction Y we revisit the implications ol
larger array sizes by partitioning very large arrays into multiple groups without varying the

declustering ratio.

7.1.1. No effect on fault-free performance

Figure 11 plots the average and nineticth-percentile user response time vs. the achieved user
I/0 operations per sccond when the declustered parity and RAID Level S arrays are fault-{ree.
This figure shows that for OLTP workloads. declustering parity causes no tault-free pertformance

degradation with respect to RAID Level .

7.1.2. Declustering greatly benefits degraded-mode performance

Figure 12 plots the respective disk arrays™ uscr responsc-time against achieved user VOs per
second when cach array contains one failed disk. but reconstruction has not vet been started. At
low workloads the two organizations perform identically. since the extra VOs caused by accesses
to the failed disk’s data can casily be accommodated when disk atilization is low. As the workload
intensity climbs. the failure-recovery problem in RAID Level S arrays becomes evident: the
RAID Level 5 group containing the failure saturates at about 600 user /Os per second (15 user
I/0Os per sccond per disk), and forms a system-wide performance hottleneck. Because the declus-

tered-parity array distributes failure-induced work across all disks. it is able o deliver about 259
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Figure 12: Comparing RAID Level 5 to parity declustering: degraded-mode performance.
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Figure 13: Comparing RAID Level S to parity declustering: response time during reconstruction.

more [/Os per sccond while still delivering a 90th percentiic user response time of about 159 over

the fault-free case.

7.1.3. Declustering benefits persist during reconstruction
Figure 13 shows average and Y0th percentile user response umes in reconstruction mode:. that
is. while reconstruction is ong.ng. In contrast to the degraded-mode performance shown n

Figurce [2. Figurc 13 shows that at low user workloads. parity declustered arrays deliver a slightiy
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Figure 14: Comparing RAID Level 5 w parity declustering: reconstruction time.

worse response time in reconstruction mode. A multiple group RAID Level 5 array sulters less
penalty tor reconstruction at low foads than does a parity declustered array because many disks
experience no load increase and those that do sce an increase have plenty of available bandwidth.
But. because all reconstruction work is performed by only one group of a RAID Level 5 mulu-
group array. this group quickly becomes saturated as the on-line user load increases. Oncee a group
in the RAID Level 5 array 1s saturated. its long response umes dramatically increase average and

YOth percentile response times for all user processes.

Turning to the issue of ume until reconstruction completes. Figure 14 illustrates the heart of
the tailure recovery problem in RAID Level 5 arrays. Since the workload increases dramatically
on surviving disks in the group containing a lailed disk. and since these are the only disks that par-
ticipate in recovering the contents ot this tailed disk. reconstruction time is very sensitive to the
lault-free user workload. The declustered parity organization was designed o overcome this prob-
lem by both reducing the per-disk load increase in reconstruction and utilizing all disks in the
array to participate in this reconstruction. In other words. a RAID Level § array has reconstruction
handwidth cqual only to the unused bandwidth on the disks in one group. but a declustered parity

array provides the full unused bandwidth of the array o cffect reconstruction.

The minimum possible reconstruction time is the time required to write the entire contents ol
the replacement disk at the maximum bandwidth of the drive. The simulated 320 megabyte drives
support a maximum write rate ol approximately 1.6 MB/sce. and so the minimum possible recon-

struction time is approximately 200 scconds. In Figurce 14, reconstruction time in the declusiered
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parity organization at 600 user I/Os per second (about 50% of maximum utilization) is approxi-
mately 260 seconds. indicating that near optimal reconstruction performance is obtained. Contrast
this with the RAID Level 5 organization, where reconstruction time is essentially unbounded at
this user access rate. To emphasize. Figure |3 and Figure 14 show response time and reconstruce-
tion time in the same on-line reconstruction event - they show that parity declustering provides
huge savings in reconstruction time as well as savings in response time tor moderately and

hecavily loaded disk systems.

7.1.4. Declustering also benefits data reliability

Our tinal tigure ol merit is the probability of losing data because ol a disk failure occurnng
while another disk is under reconstruction. Assuming that the likelihood ol a disk’s failure is inde-
pendent of that of cach other disk: that is. assuming that there are no dependent disk taiture modes
in the system, Gibson and Patterson |Gibson93] model the mean time o data foss as

MTTF?,
MTTDL = ‘

NMTTR

groups’ diskspergroup (IV«Ii.\'k.\pcru roup -

where MTTF ;. is the mean time to failure for cach disk. Ny, 18 the number ol groups in the
array. Nyiskspereronp 15 the number ot disks in one group (Nyiskspergronp = G in RAID Level 5
arrays and Nyjsespereronp = C 10 parity-declusiered arrays). and MTTR ;s the mean ume o
repair (reconstruct) a failed disk”. From this. the probability ol data loss in a tme period 7 due o
a double disk tailure condition can be modeled as
P (data loss in time T) = 1.0 =" MIPE

Figure 15 shows the probability of losing data within S and 10 years toptimistic estimates ol
a disk array’s usctul litetime) duc to a double-Tailure condition in cach ol the two organizations.,
using MTTF ;. = 150,000 hours. The RAID Level 5 array is more rehable at low user aceess
rates because a multiple-group RAID Level 5 array can tolerate multiple simultancous disk Lul-

urcs without losing data as long as cach latlure occurs in a different group. In contrast. there are

9. Gibson and Patterson treat dependent tailure modes and the cttects of on-tine spare disks in
depth. As nearly afl of that work appfics here directly. we will only describe the simple and illus-
trative casc of independent disk failures.
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Figure 15: Comparing RAID Level 5 to parity declustering: probability of data loss within (1) 5
years and (b) 10 yecars. Note that the Y-axis is log-scaled.

no double-tailure conditions that do not cause data loss in a declustered parity array. However. as
the user accers rate rises. the reconstruction time, and the resulting probability ol data loss. rises
much more rapidly in the RAID Level 5 array. For the example arrays and workload. the declus-
tered parity array becomes more reliable at about 10 user accesses per sccond per disk (a tault-
tree utilization of about 409 ). This is significantly less than the user workload required o saturate

the RAID Level § array during reconstruction (about 14 accesses per sceond per disko.

7.1.5. Summary: declustered parity allows higher normal loads in on-line systems

In this scction we have considered the ctfects of replacing a multi-group RAID Level S wrray
with a declustered parity array of the same cost and the same user capacity. Essential tor s viabil-
ity. declustered parity achicves the same tault-Iree performance as an cquivalent RAID Level S
array. Its advantage is that it also supports higher user workloads with lower response time i both
degraded and reconstruction mode, has dramatically shorter reconstruction time. and at moderate
and high uscr workloads. has superior data reliability. This makes a compelling case tor the use ol
parity declustering in on-line systems that cannot tolerate substantial degradation durmg tatlure

recovery.
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7.2. Varying the declustering ratio

In contrast to the prior section which showed that a single group array with a declusterning
ratio (o) between 0.20 and 0.25 has substantial advantages over a mult-group array with a declus-
tering ratio of 1.0 (RAID Level 5). this section examines the etfect on tatlure recovery pertor-
mance of varying the declustering ratio (o0 in a fixed-size single-group array. Because the size ol
the array. C. is fixed. varying the declustering ratio (a0 = (G- D/AC-1)) is achieved by varying the
size of cach parity stripe. G. This determines the parity overhead. 1/G. and correspondingly. the
fraction of storage available to store user data. (G-1/G. As ocis decreased [rom 1.0, the user data
capacity of the array decreases but the failure-recovery performance improves sinee the total fail-
ure-induced workload decreases. We shall show that declustering ratios larger than 0.25, which
provide low parity overhead. yield much of the performance benefits ot the example m the last
section. We shall also show that in systems very sensitive o performance during lailure recovery.
declustered mirroring (G = 2) is a special case with minimal declustering ratio. high parity over-
head. and failure-recovery pertormance advantages unavailable in most other declustered organi-

Zalons.

We consider the same array size (40 disks). and report the pertormance of the arrays on the
workload described in Table 2a. using a tixed uscr access rate of 14 user [/Os per second per disk.
This ratc was sclected because it is approximately the maximum rate for this workload that the
arrays can support using a RAID Level 5 layout (o= 1.0). Tt causes the disks to be utilized at

slightly less than 509 in the tault-Iree case.

The arrays are cvaluated at oo = 1.0, aa =075, 00 = 0.5, a0 = 0.25, and two special cases G = 3
and G = 2. The case G = 3 is signiticant because when a parity stripe contains only two dati units
and one parity unit, it is possible to improve small-write performance by replacing the normal
four-access update (data rcad-modity-write tollowed by parity read-modify-write) by a three-
access update. In this case. the controller reads the data unit that is not bemng updated. computes
the new parity from this unit and the unit (o be written. and then writes the new data and new par-

iy.

The case G =2 is important because 1t is equivalent o disk mirroring. except that the backup

copy of cach disk is distributed across the other disks in the wiray instead of being located on a
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Figure 16: Varying the declustering ratio: uscr response time in fault-Iree mode.

single drive. For comparison. the graphs also include the case where the backup copy is located
on a single drive. To distinguish between these two. we refer to the case where the backup copy s

on a single disk as “mirroring”. and the case where itis declustered as the “G=27 case.

[n both mirroring and parity declustering with G =2, the four accesses assoctated with a
small-write operation are replaced by two: one write to cach copy of the data. Another optimiza-
tion also applies: since there are two copies ol every data unit. 1t is possibie to improve the perfor-
mance of the array on rcad accesses by selecting the “closer™ of the two copies at the ume the
access 1s initiated [Bitton8R]. The raidSim simulator contains an accurate disk model. and so we
implement this as follows: when a read access is initiated. the simulator locates the two copies
that can be read and then computes the completion time of the request Lor cach of the two possible
accesses. This computation takes into account all components of the access time (queacing. seok-
ing. rotational latency. and data transfer). The simulator selects and issues the access that will
complete sooner. We refer to this as the shortest access optimization. We will see that these opu-
mizations can be significant for performance. but they only apply in the G=2 and =3 cases.

which arc expenstve in terms of capacity overhead.

7.2.1. Fault-free performance: benefits of high overhead optimizations
Figurc 16 shows that the responsc time performance ot a fault-free array is independent ol

in all cases except G=2 and G=3, where the above-described optimizations can be applicd. This

RK




R AADceclustering: 9044
200 1 A-ADeclustering: avy 7
z - | VY Mirronug: Y04 ﬂ
= 160 H ¥ Mirroring: avg -
7 p
!—.
5 120 | -
—I‘;
z - .
é 80 - —
= 5 4
Z o0k -
= J
O I TP WU SRS PR R
0.0 02 (4 (3.6 0.8 1.0

Declustennyg Ratio (1)

Figure 17: Varying the declustering ratio: user response time in degraded mode.

tigure contirms the result of Section 7. 1.1 that declustering parity does not negatvely atlect tault-
tree pertormance. Similarly, declustered parity with G=2 performs essentally idenucally to mir-
roring. Figure 16 does not show a large benetit tor the three-access update when =3 because the
OLTP workload used is dominated by rcad rather than write operations. However. tor (=2, the
combined responsc-time benelit of a two-aceess updale and the shortest aceess opumization s
close o a savings of 409 for average response time. and a savings ot 204 tor Y0th-pereentile
response time. Thus tor workloads such as OLTP that are dominated by small accesses. the main
consideration tor tault-tree performance is whether or not the value ot the optimizauons avatlable

in the G=2 casc warrants the large capacity overhead it incurs.

7.2.2. Degraded-mode and reconstruction-mode performance: declustering at its best
Figure 17 demonstrates the declustering ratio’s direct clfect on degraded-mode pertormancee
ot an array. As the declustering ratio, o ranges down from 1.0 the array’s response tme decreases
almost fincarly 0 a minimum that is about halt ot its maximum (at a=1.0). Comparing Figure 17
to Figurc 16, the minimum degraded-mode response times that occur with small declustering
ratios arc littde degraded trom their fault-Iree counterparts, This lack of degradation at low «
oceurs because reconstructing data on-the-fly 18 adding very litde o cach surviving disk’s utihiza-
tuon. How~ver, when a=1.0 the degracad-mode utilization is close to 1004 because this read-

intensive user workload induces a tault-tree utilizauon of shghtly less than 509 Henee. response
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Figure 18: Varving the declustering ratio: reconstruction time.

time is dramatically longer when degraded than when fault-tree.

User response time during reconstruction shows essentially the same characteristics as user
response time in degraded mode because user dccesses are given srict priority over reconsirue-
tion accesses. and so reconstruction 1s just a little more load on cach surviving disk. However.
Figurc [§ shows that reconstruction time decreases by an order of magnitude as o drops from 1.0
to 0.2, The shape of this curve is determined by the interaction of two separate bottlenecks: at
high a the rate at which data can be read tfrom surviving disks limits reconstruction rate. but.
low o the replacement disk is the botdeneck . Since a hrgh declustering ratio causes surviving
disks to be saturated with work. reconstruction time talls oIt steeply with decreasing o flatiening

out at the point where the replacement disk becomes saturated with reconstruction writes.

Finally. reconstruction tume is much longer for mirroring than for dectustered parity with
(=2 because a declustered array has the aggregate unused bandwidth of the entire array avalable
to read blocks ot the backup copy. while a murrored airay has only the bandwidth of i single disk.
The reconstruction time 1s not as long as in the case of a=1.0 (RAID Level 5) because muronng

handles user acceesses more efficiently.

10, [t the array has on-line spare disks, this bottlencck may be climinated. allowing reconstruction
time 1o be lurther reduced. by distributing the capacity of spare disks throughout the array
[Mcnon92h, Ng92|,
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Figure 19: Varying the declustering ratio: probability of data loss within (a) 5 years and (b) 10
years. Note that the Y-axis 1s log-scaled.

7.2.3. High data reliability: another advantage for declustered parity

Figure 19 shows the probability of losing data within § and 10 years duc to a disk tature
oceurring while the reconstruction of another disk is ongoing (refer to Section 7.1.4). Decreasing
reconstruction time by decreasing the declustering ratio in an array dircetly decrcases the proba-
bility of data loss in any time period. This figure. then. is fargely determined by the data in
Figurc 18, except that the mirroring case has substantially lower probability of data loss over the
given time periods. This is because the mirrored configuration can tolerate many simultancous
disk failures, so long as cach failure occurs in a distinct mirror pair. In the declustering casces.

including G=2. the simultancous failurc of any two disks in the array results in data loss.

7.2.4. Summary

In contrast to parity declustered arrays with fixed declustering ratios determined by a tair cost
comparison to multi-group RAID Level 5 arrays in Scction 7.1, this section examined the choices
available 1 an array’s declustering ratio is varicd. We found that declustered mirroring (the ~G=2"
case), although expensive in terms ol capacity overhead. offers special benelits over declustered
parity layouts with slightly higher declustering ratios. Alternatively, it fowering cost or overhead
is of prime concern. then a declustering ratio of 0.5 is ol particular interest. It provides hall the

benefit for improving degraded- and reconstruction-mode performance and nearly all the benefit
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tor reducing reconstruction time and data reliability while costing only twice the panty overhead
of a single group RAID Level S array.
8. Work reducing variations to reconstruction algorithms

. Muntz and Lui [Muntz90] identiticd two simple modifications to a reconstruction algorithm.

each intended to improve reconstruction-mode performance or reduce reconstruction tme by

. reducing the total work required of surviving disks. In the tirst. called redirection of reads. user
read requests tor data units residing on a tailed disk that have already been reconstructed are ser-
viced by the replacement disk instead of invoking on-the-tly reconstruction as s done i degraded
mode. This reduces the number of disk accesses needed to serviee the read trom G-1 1o |
Although this scems to be an obvious thing o do. we shall see that it can fengthen reconstruction
time. In the second moditication. piggvhacking of writes. when a user read request catses a data
unit to be reconstructed on-the-fly. that data unit is written o the replacement deive as well as
being delivered to the requesting process. This is intended to speed reconstructuon by reduciyg the
total number of data units that need to be recovered. but in the tollowing evaluation itwill turn out

to have little eftect.

Additionally. there are two ways o service a user wrile to a data unit whose contents have not
yet been reconstructed. In the tirst. the new data is written directly to the replacement drive. and
the parity updated o reflect this change. [n the second. only the purtty s updated: the data s not
written o disk at all. Figure 20 illustrates the two approaches: in the tirst method the new data s
written to the replacement disk. and the parity 18 updated by rcading all the other umits i the par-
ity stripe. XORing them together with the new data, and writing the resuit to the parey umie Inthe
second method. the parity 1s updated in the same manner as the tirst option. but the new data 1s not
writtcn to the replacement drive. In the latter case. the data unit bemg updated remams invahid
until recovered by the background reconstruction process. The ditlerence between these two
approaches is that the former writes the replacement disk while the latter does not. We view send-
ing user writes to the replacement disk (the tormer approach) as a third modincation that can be

applicd. and refer o it as the wser writes option.

These three options altect the distribution of work between surviving disks and the replace-

ment disk. When all three options are off. the replacement disk sees only reconstruction wirtes
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Figure 20: Two methods for servicing a uscr write to as-yet unreconstructed data.

Method | writes the new data to the replacement and updates the paritv. Method 2 updates
onlv the parity, and allows the background reconstruction process 1o later install the new data
on the replacement drive.

and user writes to data that has been previously reconstructed. while the remainder of the work-
foad 18 serviced by surviving drives. Enabling an option shifts workload trom the surviving disks
to the replacement disk: redirecting reads shitts user-read workload. piggvbacking writes shitts

reconstruction workload. and cnabling user writes o the replacement shitts user-write workload.

In a previous paper [Holland92] we analyzed the performance ol these options using the
stripe-oriented reconstruction algorithm. a 509% write workload. and small striping units (4 KB),
This secuion revises this analysis using the disk-oricnted reconstruction algorithm, the more real-
tstic and less wrte-intensive workload described in Table 2a. and track-sized stripe units, Larger
stripe units have been recommended tor varied workloads because they reduce the probability
that small requests require service from multiple disks arms while still allowing parallel ransier
for requests large cnough to benefit substantially {Chen90Ob]. The prior study showed that the pig-
gybacking and uscr-writes options had a measurable but not very signiticant cttect on reconstruc-
ton time. Because of the lower write fraction and the farger reconstruction unit in the new study.
these cffects have essenually disappeared. and so we tind that redirection of reads is the only
aption that significantly intluences tailure-mode performance. As expected. the eifects of rediree-

ton ar¢e more pronounced in the new study because ot the read-dominated workload.

In the following we show at most five of the possible cight combinations ol these three recon-
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Figure 21: Uscr response time for five combinations of reconstruction options.,
In the legend, R indicates redirection of reads. P indicates piggvbacking of writes, W oindicates
user-writes to the replacement drive. ) indicates that an option is off. and | indicates that an

option is on. The figure is difficult to read because of the overlapping lines: in all plots, the OO0,
010, and Q01 curves are essentially coincident. as are the 100 and 111 curves.

struction algorithm options: all options oft. cach option on with the other two ol and all options
on. As we shall see. only one option, the redirection of reads option. is effective for the workload

of Table 2.

8.1. The effects of the reconstruction options

Figure 21 shows the average and 90th percentile user response time during reconstruction for
five combinations of the reconstruction options. This figure shows that the piggyvbacking ol writes
and user-writes options have little effect on user response tume. To understand this tirst note that
updating a particular unit on the replacement drive can improve response tme only it that unit s
re-accessed prior to the completion ol reconstruction. However. for a random workload. the prob-
ability of re-accessing the same data unit before reconstruction completes is fairly small. and so

these two reconstruction options have little effect.

Redirection ol reads. in contrast to the other options, can be cttective for the OLTP workload.
[t improves user response time by 10-70% when the declustering ratio is near 1.0 with its benetit

diminishing 1o zcro as this ratio decrcases. It is most etfective when this ratio is large because the
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Figure 22: Reconstruction time for five combinations ol reconstruction options.

Refer to Figure 21 for a description of the legend.

surviving disks are heavily loaded by reconstruction. Otf-loading work [rom these drives by redi-
recting reads to the underutilized replacement disk improves response time by both reducing the
number of I/Os necessary to service a user rcad and by servicing such a read on a lightlv-utilized
drive. As o is reduced. however, both these effects diminish: it takes fewer disk reads o service a
uscr read to the tailed drive and the replacement disk utilization increases because these more

lightly loaded surviving disks reconstruct units more quickly.

Figure 22 shows the reconstruction time for live combinations of options. The prggybacking
of writes and user-writes options again make litte difference. In this case. itis because the work-
load 1s dominated by accesses that are smaller than one reconstruction unit. When a uscr- or pig-
gybacked-write operation occurs on the replacement disk. only a fraction ol a reconstruction unit
1s updated and marked as reconstructed. When a reconstruction process examines this unit (o
decide if 1t needs to be reconstructed. it will find that some portion ot the unit is still unrecovered.
The reconstruction process then has the option ol reconstructing only the unrccovered portion ol
the unit, or of reconstructing the entire unit. Because there is little difference between the ume
taken to read an entire track and the time taken to read a track less one unite and because many
disks cannot read two blucks on one track as quickly as they read the whole track. our implemen-

tation always chooses the latter option. Henee, most ol the potential benefits to reconstruction
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tume from user- and piggybacked-write options arc lost. since these writes do not update entire
reconstruction units. Morcover, at low o these two options actually have a negative eltect on

reconstruction time since they cause more work to be sent to the over-utilized replacement disk.

While redirection of reads reduces user response time during recovery at all values ol o it
does not have the same effect on reconstruction tume. Figure 22 shows that enabling this option
halves reconstruction time at a=1.0. but doubles it at a=().1. This is partly because the replace-
ment disk 1s over-utilized at low o but there 1s also another reason. In the absence ol user work-
load. the replacement disk services only writes trom the reconstruction process and writes 1o
previously-reconstructed  data. Because the reconstruction writes are purely  sequential. the
replacement drive experienees a very low average positioning overhead., and operates at high -
cieney. When any of the reconstruction options are cnabled. the replacement disk incurs a signili-
cant reduction in its ctliciency because it must service tar more randomly located accesses. This
accounts for the significant increase in reconstruction time at low o when the reconstruction

options are enabled.

8.2. Dynamic use of reconstruction options

As Figure 22 shows. the value of a reconstruction algorithm option depends on which part ol
the array. replacement or surviving disk. is limiting the rate ol reconstruction. In addition o being
dependent on an array’s declustering ratio. this cttect is dependent on the amount ol the tailed
disk’s data so far reconstructed. Recognizing this dependence. Muntz and Lut suggested that the
reconstruction algorithm should monitor disk utilizations and cnable or disable cach opuon
dynamically. depending on whether surviving disks or the replacement disk constitutes a bottie-

neck.

Figure 23 and Figure 24 show. respectively, user response time during reconstruction and
reconstruction tme using a monitored application ot redirection of reads mstead ot a constant
(always cnabled) application or no (always disabled) application. We have chosen o dynamically
apply only the redirection of reads option because it is the only option that stgnificantly allects
rccovery mode performance tor the OLTP workload. We refer to this dynamic reconstruction
algorithm as the monitored redirection option. We employ a simple monitoring scheme: the dura-

tion ot disk busy and idle periods is recorded, and every 300 aceesses a new estimate tor the uili-
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Figure 24: Evaluating monitored redirection ol reads: reconstruction tme.

zation of cach disk is generated. If the replacement disk utihzaton s higher than the average
surviving disk utilizauon. the replacement is declared the botteneck. and redirection of reads s
disabled until the next time the esumaltes are updated. It the opposite is true. the surviving disks
arc declared the bottleneck. and redirection of reads is enabled until the next utlization esumalte

update.

As Figure 23 shows, the response-time performance of monitored redirection is actualfy




worse at moderate and low declustering ratios than the constant-redirection case because redirec-
ton of reads. uniformly beneticial to response time when enabled. is largely disabled. Figure 24,
however. shows that reconstruction time is minimized because the reconstruction rate is at all

tmes limited by whichever disks are the reconstruction bottlencek.

To summarize. tor the OLTP workload. the only cffective work-reducing varation o the
disk-oriented reconstruction algorithm s the redirection ol reads. This option improves user
response time by as much as 104% - 209 when the declustering ratio is large while reducing recon-
struction time by as much as 404% . However at a low declustering ratio. redirection of reads bene-
tits response time by only a very small amount, and fengthens reconstruction time by over-
utilizing the replacement disk. A dynamic application ol this option based on monitoring disk ut-

lizauons achieves much of its benefits without its costs independent of the declustering ratio.

9. Array configuration: single versus multiple groups revisited

Section 7.1 shows that tor arrays of up Lo about 40 disks. a single declustered group organiza-
tion yields better tailurc-mode performance than an organization that separates disks into a set ot
independent RAID Level S groups. In this section we revisit the question of when o configure «
sct ot disks as a single group or multiple groups. where the data reliability of cach group is inde-
pendent of failures in other groups. In particular, we are interested in how to conligure arrays that
have more than 40 disks. In this context an array configuration is a sct of values for the number ot
disks ina group. C. the number of units in one parity stripe. G, and the number ol groups. denoted
Nronps- We shall see that it is notalways desitble. and sometimes not viable. w structure a large

array as a single declustered group.

A primary consideration in the construction of large single-group arrays is their susceptibility
to data loss arising from fatlures in cquipment other than the disks [Gibson93|. For example. it the
bus-connected disk array architecture shown in Figure Ta provides only one path to cach disk but
shares this path over multiple disks, the failure of a path renders muluple disks unavailable.
although not damaged. tor long periods of tme. We say that such a path fatlure constutes a
dependent fatlure mode for the set of disks on that path. To make such an array tolerant of all sin-
gle lailures according to criteria one in Scetion 4.1, these disks may not reside in the same redun-

dancy group. A cost elfective way to do this is to organize cach rank of drives as an independent
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parity group. It follows then that the size of cach declustered group (€) can be no larger than the
number of cable paths in the array. With today’s technology. board arca and cable connector size
limit the number of paths operating in a single array to a relatively small number, usually much
less than 40, In this casce. layouts based on block designs and the results of Section 7.1 are directly

applicable.

In disk arrays with sulticient redundancy in non-disk components. such as the fully duphi-
cated versions of Figure 1. the number of disks managed as a single parity group could be much
larger than 40. In the process of conliguring such large arrays, the fundamental trade-otl iy
hetween cost, data reliability, parity overhead. fault-lree pertormance. and on-line tatlure recov-
cry pertormance. Remaining with the OLTP-like model of such an array’s workload. we assume
that the goal of a conliguration is to achicve the lowest cost array which mecets specitic /0O
throughput and response time requirements and that component disk capacity can be manipulated
to meet data capacity targets. In particular. to maximize throughput tor a target number of disks.
we seek tault-tree disk utilizations as high as possible while msuring that response time require-
ments are met during on-line reconstruction. The most effective method of domg this s w0 mimi-
mize the increase in disk utilization during on-line reconstruction. which can be scaled by the
declustering ratio. o0 = (G-1)/(C-1), because this directly influences the increase in load on surviv-
ing disks during on-the-tly reconstruction in degraded-mode. Lett to be determined are the size ot
cach group in the array. €. and the number ol these groups. Ny, and the impact ol these two

paramelers on data reliability and parity overhead.

The data reliability equations in Scction 7.1.4 show that mean time unul data loss s inversely
proportional to group size (C). and tailure recovery time (MTTR). for a lixed array size. But given
a tault-tree user workload and a declustering ratio, fatlure recovery ume is a largely a function ol
a single disk’s capacity and performance as shown in Figure 14 and Figure I8, This implies that
data rehiability increases with decreasing group size (which means increasing the number of
groups). However, with a tixed declustering ratio, decreasing the group size reduces the parity
stripe size. G, which increases the parity overhead of the array. //G. Increasing parity overhead. in
turn. increases the amount of storage space cach disk must provide. increasing overall array cost.

This 1s the final trade-oll: data reliability against cost.




Figure 25 quantities this rehability versus overhead trade-oft Tor various array si/es. using
o =0.25 and o = (1.5, the IBM Lightning drives described in Table 2. the rehiability modet mn Sec-
tion 7.1.4. and reconstruction times given in Figure 18, In general. reconstruction ttme may he
esttmated by simulation, as in this paper. or by using an analytical model such as that of Merchant

and Yu [MerchantV2] or Muntz and Lui [ Muntz901,

Figure 25 shows that the large arrays considered (400 and 800 disks) will have a 3% 10 304
chance of losing data within 10 years when contigured as a single group. Where this is too large a
risk. the array must be partitioned into multiple independent groups. When this is done. data reh-
ability can be increased by an order of magnitude while parity overhead remains bencath 2047,

when a=0.25. und beneath 0% . when o=().5.

This tigure also allows us to revisit the question presented i Section 4.4, In thrs section we
discussed sclecting between a declustered parity layout based on balanced incomplete block
designs or based on random permutations. Pessimistically, i a declustered parity group size
cxceeds 40 we cannot guarantee a small block design tor arbitrary declustering rato: for such a
guarantee, Merchant and Yu's random permutations layout can be used. In terms ol Figure 25,
points in the lower right of the data foss probability charts correspond o multuple group configu-
rations where individual groups arc not larger than 40 disks. It block designs are used. this tigure

also shows that the parity overhead can be as low as 10 when oo =025, 0or 59 when o = (0.5

10. Conclusions

Redundant disk arrays. developed to insure that lost data can be recovered qguickly. have the
ability to provide on-linc service during tailure recovery, but often with dismal performance. For
example. the 80% read workload characteristics ol OLTP. serviced by a 40-disk RAID Level 3
array Increases inintensity by about 60% during on-line tailure recovery. so tault-tree utilization
must be less than about 60% 11 response time during recovery is to meet any realistic target. In this
paper we evaluated two types of techniques Tor managing the performance ol a redundant disk
array during on-line lailure recovery. First. we examined how the organization ol data and parity
in the array determines the amount of work that must be done to recover the contents of a failed
disk. Sccond. we explored alternative strategics for exceuting this recovery with particufar inter-

estin the trade-olt between cost. tailure recovery time and performance during recovery.
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Figure 25: The trade-oft between reliability and capacity tor o = 0.25 and a0 = .50,

The data loss probabilities are plotted on a log scale, while the capacity overhead scale is linear:

The most common disk array organization uscd tor controlling data reliability and on-hne

tatlure recovery pertormance is based on dividing the array into multiple independent groups. In

thi, case most accesses will not sutfer any degradation during on-line Tatlure recovery. Unlortu-

nately. 1 a RAID Level 5 organization is used in cach group, some aceesses muay expericnce i
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large degradation in performance. In contrast. a parity declustering organization tor the tull size
array distributes recovery work over all disks, lighdy degrading the performance ol all accesses.
For the arrays we investigated. a parity declustering organization supports. betore saturating. a
40-50% higher user workload than a cost-cquivalent multiple-group RAID Level 5 array. When
we considered only a single group and varied the amount of the array’s capacity sacrificed for
redundant information. we tfound that increased declustering ot parity can reduce average and
90th pereentile user response ume by a factor of two in both degraded mode and reconstruction
mode. and can reduce reconstruction time by up o an order of magnitude. Parity declustering.
then. provides a powertul and flexible mechanism tor balancing cost. tailure recovery perlor-

mance. and reconstruction time.

For cither organization of data and parity in an array. a sccond important technigue for
improving the tailurc-mode pertormance is to tune the reconstruction algorithm. We presented a
disk-oriented reconstruction algorithm, and demonstrated that it yields up to 404 laster recon-
struction than the more common stripe-oriented approach. while maitaining similar uscr respon-
siveness. We also investigated the benetits and  drawbacks of three moditicatons o the
reconstruction algorithm. concluding that tor rcad-dominated workloads such as have been
observed in OLTP traces. the only option that has significant impact on fatlure-mode pertormance
is whether user reads to previously-reconstructed data were serviced by the replacement disk or
by the surviving disks (the redirection of reads option). Since the benetit of redirection is contigu-
ration-dependent. we analyzed a proposed technique Tor optimally controlling 1ts apphcation
based on observed disk utilizations. We concluded that the strategy doces vield opumal reconstruce-
ton time, but that the simpler strategy ol applying redirection at for all applicable accesses allows

the svstem 1o achieve about 109% better user response time for certain configurations,

In the final section of the paper we discussed trade-olts mvolved in determining the contigu-
ration of large arrays. returning to the question of when itis necessary to partitton large arrays o
multiple independent groups to achieve acceptable data reliability. We found that, in very large
arrays. parity declustering and partitioning can increase data reliability by an order of magnitude
while maintaining good on-line Tailure recovery performance and requiring a capacity overheid

tor parity in the range of 5-20% .
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There remain several arcas to explore in the topic of failure recovery. First. because pariy-
based redundant disk arrays exhibit small-write pertormance that is up o a tactor of tour worse
than non-redundant arrays. and a Lactor of two worse than mirrored arrays. 1t is highly desirable o
combine parity declustering with pariry logging | Stodolsky93 [ or log-structured file svstems
[Rosenblum9 1], both techniques tor improving this small-write performance i disk arrays. Scc-
ond. the block-design based layout could be made much more general by relaxing the require-
ments on the tuples used tor fayout. For example, it might be possible to derive a balanced lTayvouwt
trom a packing or covering |Mills92] instead of an actual block design. or a lavout might he
dernived trom a design in which the number of objects per tuple 1s not constant. Each of these
approaches would expand the range ol configurations that can be implemented using the block-
design-based  layout presented in o this paper. Finally, implementing  distributed  sparing
[Mcnon92b] in a declustered array could climinate the replacement disk as o reconstruction hot-
teneck tor low values of the declustering ratio (), and perhaps vield extremely last reconstruce-

ton.
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